Online Traveling Salesman Problems with Flexibility
نویسندگان
چکیده
The Traveling Salesman Problem (TSP) is a well-known combinatorial optimization problem. We are concerned here with online versions of a generalization of the TSP on metric spaces where the server doesn’t have to accept all requests. Associated with each request (to visit a point in the metric space) is a penalty (incurred if the request is rejected). Requests are revealed over time to a server, initially at a given origin, who must decide which requests to serve in order to minimize the time to serve all accepted requests plus the sum of the penalties associated with the rejected requests. In a first online version of this problem (basic version), we assume that the server’s decision to accept or reject a request can be made any time after its release date. In a second online version of this problem (real-time version), we assume that the server’s decision to accept or reject a request must be made exactly at its release date. After reviewing prior results on the online TSP, we first provide an optimal 2-competitive online algorithm for the basic version of the problem in a general metric space, improving prior results from the literature. We then consider the real-time version of the problem and show that there can’t be any finite c-competitive online algorithm in a general metric space.
منابع مشابه
New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman Problems (GTSP)
Among numerous NP-hard problems, the Traveling Salesman Problem (TSP) has been one of the most explored, yet unknown one. Even a minor modification changes the problem’s status, calling for a different solution. The Generalized Traveling Salesman Problem (GTSP)expands the TSP to a much more complicated form, replacing single nodes with a group or cluster of nodes, where the objective is to fi...
متن کاملMarkov Chain Anticipation for the Online Traveling Salesman Problem by Simulated Annealing Algorithm
The arc costs are assumed to be online parameters of the network and decisions should be made while the costs of arcs are not known. The policies determine the permitted nodes and arcs to traverse and they are generally defined according to the departure nodes of the current policy nodes. In on-line created tours arc costs are not available for decision makers. The on-line traversed nodes are f...
متن کاملSolving the Multiple Traveling Salesman Problem by a Novel Meta-heuristic Algorithm
The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization problem, it can be extended to a wide variety of routing problems. This paper presents an efficient and evolutionary optimization algorith...
متن کاملAn Approach for Solving Traveling Salesman Problem
In this paper, we introduce a new approach for solving the traveling salesman problems (TSP) and provide a solution algorithm for a variant of this problem. The concept of the proposed method is based on the Hungarian algorithm, which has been used to solve an assignment problem for reaching an optimal solution. We introduced a new fittest criterion for crossing over such problems, and illu...
متن کاملSolving Traveling Salesman Problem based on Biogeography-based Optimization and Edge Assembly Cross-over
Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography concept. This algorithm uses the idea of animal migration to find suitable habitats for solvin...
متن کاملA Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem
The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009